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Abstract. 
Computer science, software engineering and artificial intelligence are dynamic, 
practical and popular subjects to study. They possess a short and turbulent 
academic history, a controversial and idiosyncratic curriculum and provide the basis 
for a wide range of lucrative careers. We consider why the current offering is 
inadequate for the challenge of the future and what might be done about it. 
 
1. Introduction. 
 
I’ll start by considering the sort of statement that our universities are being obliged 
(by HEFCE) to create as part of their Learning and Teaching Strategy.  
 
Leaving out the usual preambles (the University of ***** is a research-led university 
that undertakes research and teaching of the highest quality in an international 
context... blah.. blah..), we find statements like this: 
 
The university seeks to provide an education based around: 
•  the development of knowledge and understanding; 

•the development of subject specific skills; 
•  the development of an intellectual ability to analyse information rigorously, to use 

reasoned arguments to reach a conclusion or a problem solution; 
•  identifying authoritative propositions and question orthodoxy; 
•  critically reviewing their own work and those of others; 
•  developing an enthusiasm and appetite for lifelong learning; 

etc.  
 
If that is what we are about, does computer science, in the widest sense, deliver? 
Does our curriculum deal with these issues? We consider some of these issues and 
also some raised in the ACM report [1]. 
 
What is computer science, is it a science and how does it relate to the engineering of 
applications and artefacts? 
 
Although called a science, computer science has few of the attributes one might 
expect from looking at other, more established, sciences. We do not seem to carry 
out experiments although our laboratories are full. Rarely are our students trying to 
investigate fundamental truths or explore the behaviour or construction of objects in 
those laboratories. If our students are investigating anything it is more likely that they 
are trying to find out why their attempts at building things don’t work and how to fix 
them. The lessons that they might learn from this are rarely reinforced in any 
systematic way in our lectures and commentaries. In other words, we emphasise 



facts about architectures and languages at the expense of understanding why these 
things are the way they are. 
 
The main focus of the scientific dimension is theory - theory of computation, 
algorithmic complexity and models of concurrency. We use mathematics and formal 
logic as tools and languages for these topics and suffer the fact that our students 
know nothing of these subjects and do not, in the main, wish to.  
When building software systems and artefacts we teach software engineering princi-
ples despite any scientific or theoretical justification for doing so. When faced with 
similar tasks in industry our graduates ignore all that we have taught - primarily 
because no-one in industry believes that they are practical or necessary.  
 
The nearest we get to any scholarly analysis is in the treatment of complex 
application domains - particularly in artificial intelligence applications - scientific 
theories of perception (vision, speech) and in language. Here we can argue that we 
are being scientists but the products developed, e.g. speech recognisers, natural 
language processors etc. are built more by accident (and endless experiment and 
training) rather than by design.  
 
The relative youth of the subject and the effect of rapid advancement in the 
technology have left us with a body of confused and largely irrelevant ideas and 
procedures that cannot be justified through hard scientific evidence. We pin our ideas 
onto partial and abstract theories that cannot stand up to the demands and the 
complexity that modern applications require and we rarely criticise them. 
 
2. Content, fashion and prejudice. 
 
In the past there were the programming language wars. Endless hours of 
departmental debate on which should be the first/main programming language have 
consumed our lives. The passions exposed are quite remarkable.  
 
All that is now over. Java reigns supreme after a mere two years of existence! 
Nothing in the history of mankind has swept the world so swiftly and so completely, 
despite the many problems of teaching an extremely unstable and hype-loaded 
language. The attempts by some universities to introduce a functional language as a 
way of levelling the playing field are beginning to crumble. We rarely require A Level 
Computer Studies because we don’t approve of it but a large proportion of students 
take it and thus know all about programming. However we are happy to admit 
students who have never touched a computer before - thus the programming gap 
between our two cohorts of freshers.  
 
A functional language is also supposed to be a good thing as it helps to develop 
“good” programming style, and to explore esoteric concepts such as higher order 
abstraction and lazy evaluation - despite the knowledge that apart, from a certain 
community of research workers, these languages are just curiosities. 
 
Now we are faced with the UML bandwagon, trundling irresistibly in the wake of Java 
and comprising the most irrational, inconsistent, misleading and cock-eyed rag bag of 
concepts that have ever graced the academic stage, see [2, 3, 4, 5].  
 



The sectarian nature of the subject is being replaced by the grey uniformity of a lan-
guage and method, which would normally be very worrying, more so since it is 
accompanied by no demonstration whatsoever of its capability or coherence. 
Enthusiasts of the OO approach should ask themselves, before getting totally carried 
away, how they propose to test their creations, rigorously! How many realise that 
more time and money is spent on testing, review and debugging than on all the other 
stages of the lifecycle put together. We must raise the profile of principled testing and 
debugging in our courses. 
 
3. Finding the essence. 
 
The tension, that only exists in academic subjects with a strong relevance to the 
needs of society, consists of the widely differing perspectives of the academic 
research agenda and the practical needs of industry. Computing probably suffers the 
most of any subject from this.  
 
If one looks at the sort of research that is popular, both with the practitioners and the 
research councils, we find a subject that is almost completely divorced from the 
principal pressures of industry, despite many attempts through collaborative projects, 
EU initiatives and so on. Compared with subjects such as materials and engineering 
the impact that the outcomes of projects in computing have had on industrial practice 
and projects is almost non-existent. Where there has been the biggest impact it is 
usually because the foundations of the problem domain have been based on proper 
scientific investigation rooted in the physical world.  
 
Meanwhile the subject is driven on by industrial innovations from abroad, for example 
Microsoft, Sun. Although we will try to follow one (e.g. Java) we will ignore the other 
(who teaches Visual Basic as their main language?) despite the industrial demand.  
 
If we are experimental scientists we should be doing some experimental science. We 
should be teaching our students how to investigate the properties and behaviour of 
artefacts. This could be done through artefact classes. In other science and 
engineering subjects there are laboratory classes devoted to taking things apart to 
see how they are made and function. Why could we not do the same? Our emphasis 
is always on making things, often trivial and useless devices, rather than looking at 
how things work. We should be taking some source code and seeing how different 
parts of it work, how by changing components or lines of code different behaviour 
results. Looking at performance issues on different platforms and under different 
loadings. This provides a much clearer understanding than just reading theoretical 
texts. Part of our problem is that we do not, ourselves, know how to conduct these 
experiments. Another problem is our lack of technical support. In good science 
departments each academic has at least one technician, if we had that level of 
support we could try to investigate our subject better, being funded as mathematics 
for so long has meant that our only tools for investigating our subject are theoretical 
and unvalidated. 
4. The skills dimension. 
 
The recent DfEE report “Skills in the Information Age”,  [8], makes rather uncomforta-
ble reading for academics. It is clear that the scientific and technical knowledge of 
their incoming graduates plays a very secondary role to the principal requirements of 



employers. What is wanted is bright students who have excellent soft skills, who can 
work well in teams, who can adapt quickly to new circumstances, who have a clear 
understanding of how business and enterprise works and so on. The fact that they 
may have a deep understanding of denotational semantics or can prove impressive 
results about the complexity of obscure parallel algorithms or can create visually 
appealing (but probably meaningless) design documents in UML is of no 
consequence if they have never negotiated with a client or been able to test an ap-
plication to make it acceptable to a user community. 
 
We have got it all wrong. We are pedalling old ideas and theories (Z, etc.) of little real 
practical use, we are making our students perform difficult mathematical tricks for no 
reason, we are asking them to build software applications that nobody wants and we 
think that what we are doing is what the subject is all about. 
 
The subject is changing fast and we are getting left behind. We need to realise that 
addressing industry’s needs requires more than putting on a dreary course on 
professional issues and lots of group work. Group work is almost always a disaster. It 
is very unpopular with students who regard it as a threat, it is often poorly managed 
and the assessment is often a lottery. See [6, 7]. 
 
If the object of a group project is to develop a significant piece of software then we 
have to go about it in a sensible way. If the deliverable is a bin job, that is something 
that no one really needs, then it is seen as a waste of time and fails to motivate the 
students. If there is a real client, however, someone who really wants the software 
and who the students need to negotiate with, then this will achieve much. The client’s 
reliance on their work will also motivate them to produce a much higher quality 
product than if they know that it is to be binned after the marks have been awarded. 
This will give them a much greater understanding of quality issues, of testing and of 
trying to satisfy the client’s needs than any phoney academic exercise. It provides a 
much deeper intellectual challenge for both students and staff. 
 
The issue of critical review also needs to be addressed. It is bound up in quality 
assurance and must feature in real design projects. However, it is also important in 
an academic context. In a hype laden world it is vital that we encourage our students 
to take a highly critical perspective on the published literature. Give them some 
recent journal articles and ask them to present the ideas and findings to the class 
and to mark the paper in a structured way. This is a fascinating exercise rather like 
the fable of the Emperor’s new clothes! 
 
Returning to the issue of experimental investigation, we need to directly address the 
issue of developing our students skills in model building. They need to know how to 
abstract real computational models, investigate their properties and to validate them 
against a real system that the model is supposed to represent. If we had done that 
seriously in the past many of the inadequate mathematical models and languages 
used in formal methods would have been rapidly consigned to history. How can we 
consider a software model that does not deal explicitly with time if we are claiming to 
be interested in safety-critical systems? The emphasis on modelling dwells too much 
on notations and the proving of simple facts and not enough on validation and 
evaluation. We are sending out graduates who are sceptical about what we have 



taught them because they know that it cannot cope with the demands of real sys-
tems.  
 
Another weakness is the way we compartmentalise everything into modules etc. We 
ought to be looking at the breadth of ideas and finding ways of selecting the most ap-
propriate for the job in hand. Why is it that considerations of topics such as intelligent 
agents is separated from discussions of algorithms, or formal methods or software 
engineering and quality assurance?  
 
No wonder students revert to type when they start their individual projects and seem 
to forget much of what we have taught them, suppressed in the cause of hacking up 
some code to produce some “working” end product. There is no opportunity for them 
to take a principled look at the problem and choose the appropriate technology, 
intelligent or not, to solve it. 
 
5. Does Computer Science have a future? 
 
Computing degrees will continue to have a future but it is less clear as to whether 
they are really necessary. What is their purpose? Is it to provide employment of 
academic computer scientists and to feed into PhD programmes (thus enabling us to 
clone ourselves)? Or should these degrees try to provide a more industrial focus?  
 
The successful departments will try to address both issues with an increasing 
emphasis on specific application domains and on more practical project exercises. 
The basic theory (Turing etc.) will still be part of our foundations but the current 
generation of formal methods and software engineering techniques will need to re-
invent themselves into something that actually addresses the challenges of complex 
system design and construction and can be defended in a scientific way. What is 
really needed is a software engineering science. The stirrings are there but it won’t 
happen overnight, [9]. 
 
Some suggestions for developing our curriculum: 
•  some real experimental science; 
•  more focus on artefact studies; 
•  better integration of ideas; 
•  real projects with real clients; 
•  critical reviews and assessment of work; 
 
And then there is assessment, but that is another story! 
 
References. 
[1] A B Tucker et al. “Strategic directions in Computer Science Education”, ACM 
Computing Surveys, 28, 1996. 
[2] A J H Simons and I Graham, "30 Things that go wrong in object modelling with 
UML 1.3" , chapter 16 in: Behavioral Specifications of Businesses and Systems eds. 
H Kilov, B Rumpe, I Simmonds (Kluwer Academic Publishers, 1999), 221-242.  
[3] A J H Simons, "Use cases considered harmful", Proc. 29th Conf. Tech. Obj.-Ori-
ented Prog. Lang. and Sys., (TOOLS-29 Europe), eds. R Mitchell, A C Wills, J Bosch 
and B Meyer (Los Alamitos, CA : IEEE Computer Society, 1999), 194-203.  



[4]   A J H Simons and I Graham, "37 Things that don’t work in object modelling with 
UML", British Computer Society Obj.-Oriented Prog. Sys. Newsletter, 35 eds. S Kent 
and R Mitchell (BCS: Autumn, 1998) 
[5] A J H Simons, M Holcombe & K Bogdanov, “Divide and conquer testing using 
hierarchical object statecharts”, Submitted. 
[6] H Parker, M Holcombe and A Bell, “Keeping our customers happy: Myths and 
management issues in "client-led" student software projects” Computer Science Edu-
cation, in press. 
[7] M Holcombe, A Stratton, S Fincher, G Griffiths (Eds), “Projects in the computing 
curriculum” Springer, 1998. 
[8] See http://www.dfee.gov.uk/skillsforce/ 7.htm 
[9] M Holcombe & F Ipate, “Correct systems: building business process solutions” 
Springer Applied Computing Series, 1998. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


