
Education, teaching and learning - a discussion paper

Page 1 Printed: 12 July 2008

Computer Science education, teaching and learning - a discussion paper.

Professor Mike Holcombe, Dean of the Faculty of Engineering,
Department of Computer Science,

University of Sheffield.

Abstract.
Computer science, software engineering and artificial intelligence are dynamic, practical and
popular subjects to study. They possess a short and turbulent academic history, a controversial
and idiosyncratic curriculum and provide the basis for a wide range of lucrative careers. We
consider why the current offering is inadequate for the challenge of the future and what might
be done about it.

The ACM Computing Classification System K.3.2 Computer and Information Science Education

1. Introduction.

I’ll start by considering the sort of statement
that our universities are being obliged (by
HEFCE) to create as part of their Learning
and Teaching Strategy.

Leaving out the usual preambles (the Uni-
versity of XXXX is a research-led university
that undertakes research and teaching of the
highest quality in an international context...
blah.. blah..), we find statements like this:

The university seeks to provide an education
based around:

• the development of knowledge and un-
derstanding;
• the development of subject specific skills;
• the development of an intellectual ability
to analyse information rigorously, to use
reasoned arguments to reach a conclusion
or a problem solution;
• identifying authoritative propositions
and question orthodoxy;
• critically reviewing their own work and
those of others;
• developing an enthusiasm and appetite
for lifelong learning;
etc.

If that is what we are about, does computer
science, in the widest sense, deliver? Does
our curriculum deal with these issues? We

consider some of these issues and also some
raised in the ACM report [1].

What is computer science, is it a science and
how does it relate to the engineering of appli-
cations and artefacts?

Although called a science, computer science
has few of the attributes one might expect
from looking at other, more established, sci-
ences. We do not seem to carry out experi-
ments although our laboratories are full.
Rarely are our students trying to investigate
fundamental truths or explore the behaviour
or construction of objects in those laborato-
ries. If our students are investigating any-
thing it is more likely that they are trying to
find out why their attempts at building things
don’t work and how to fix them. The lessons
that they might learn from this are rarely re-
inforced in any systematic way in our lec-
tures and commentaries. In other words, we
emphasise facts about architectures and lan-
guages at the expense of understanding why
these things are the way they are.

The main focus of the scientific dimension is
theory - theory of computation, algorithmic
complexity and models of concurrency. We
use mathematics and formal logic as tools
and languages for these topics and suffer the
fact that our students know nothing of these
subjects and do not, in the main, wish to.

Education, teaching and learning - a discussion paper

Page 2 Printed: 12 July 2008

When building software systems and arte-
facts we teach software engineering princi-
ples despite any scientific or theoretical
justification for doing so. When faced with
similar tasks in industry our graduates ignore
all that we have taught - primarily because
no-one in industry believes that they are
practical or necessary.

The nearest we get to any scholarly analysis
is in the treatment of complex application
domains - particularly in artificial intelli-
gence applications - scientific theories of
perception (vision, speech) and in language.
Here we can argue that we are being scien-
tists but the products developed, e.g. speech
recognisers, natural language processors etc.
are built more by accident (and endless ex-
periment and training) rather than by design.

The relative youth of the subject and the ef-
fect of rapid advancement in the technology
have left us with a body of confused and
largely irrelevant ideas and procedures that
cannot be justified through hard scientific
evidence. We pin our ideas onto partial and
abstract theories that cannot stand up to the
demands and the complexity that modern ap-
plications require and we rarely criticise
them in class.

2. Content, fashion and prejudice.

In the past there were the programming lan-
guage wars. Endless hours of departmental
debate on which should be the first/main
programming language have consumed our
lives. The passions exposed are quite re-
markable.

All that is now over. Java reigns supreme af-
ter a mere two years of existence! Nothing in
the history of mankind has swept the world
so swiftly and so completely, despite the
many problems of teaching an extremely un-
stable and hype-loaded language. The at-
tempts by some universities to introduce a
functional language as a way of levelling the
playing field are beginning to crumble. We
rarely require A Level Computer Studies be-

cause we don’t approve of it but a large pro-
portion of students take it and thus know all
about programming. However we are happy
to admit students who have never touched a
computer before - hence the programming
gap between our two cohorts of freshers.
One half, having programmed since they
were 8, know more about programming than
we do, the other half never quite sort it out in
the three short years they are with us!

A functional language is also supposed to be
a good thing as it helps to develop “good”
programming style, and to explore esoteric
concepts such as higher order abstraction
and lazy evaluation - despite the knowledge
that apart, from a certain community of re-
search workers, these languages are just cu-
riosities. Maybe students who have done
these subjects build better software, maybe
not.

Now we are faced with the UML bandwag-
on, trundling irresistibly in the wake of Java
and comprising the most irrational, incon-
sistent, misleading and cock-eyed rag bag of
concepts that have ever graced the academic
stage, see [2, 3, 4, 5].

The sectarian nature of the subject is being
replaced by the grey uniformity of a lan-
guage and method, which would normally be
very worrying, more so since it is accompa-
nied by no demonstration whatsoever of its
capability or coherence. Enthusiasts of the
OO approach should ask themselves, before
getting totally carried away, how they pro-
pose to test their creations, rigorously! How
many realise that more time and money is
spent on testing, review and debugging than
on all the other stages of the lifecycle put to-
gether. We must raise the profile of princi-
pled testing and debugging in our courses.
But if you were really interested in designing
software that could be tested effectively and
economically you would not start from here,
i.e. UML and an object-oriented approach.

An interesting recent development is the
emergence of the philosophy of Extreme

Education, teaching and learning - a discussion paper

Page 3 Printed: 12 July 2008

Programming [10] which seems to reject the
heavy handed approach of conventional soft-
ware engineering, almost rejecting design it-
self, concentrating, instead on small scale
program development heavily constrained
by rigorous and continuous testing managed
in a more human-oriented and adaptable
way. Part of the motivation is to try to han-
dle changing and poorly understood require-
ments, partly it is a response to the fact that
human nature does not seem to be very pre-
disposed to the large methodologies that are
recommended. If software products were not
protected by wideranging disclaimers indus-
try might be more interested in building it
more carefully. We have used these tech-
niques in some of the real projects run by our
4th year software company and they do seem
rather effective, [7].

A further idea that is looking interesting and
could possibly break the monopoly of the
monolithic culture of database design is the
emergence of XML. Building information
systems that can evolve with the business
process, and which do not need expensive
maintainance by expensive systems analysts,
is an important issue. The use of suitable di-
alects of XML and smart natural language
processing techniques may well revolution-
ise things and provide much more power to
end users.

3. Finding the essence.

The tension, that only exists in academic
subjects with a strong relevance to the needs
of society, consists of the widely differing
perspectives of the academic research agen-
da and the practical needs of industry. Com-
puting probably suffers the most of any
subject from this.

If one looks at the sort of research that is
popular, both with the practitioners and the
research councils, we find a subject that is al-
most completely divorced from the principal
pressures of industry, despite many attempts
through collaborative projects, EU initia-
tives and so on. Compared with subjects

such as materials and engineering the impact
that the outcomes of projects in computing
have had on industrial practice and projects
is almost non-existent. Where there has been
the biggest impact it is usually because the
foundations of the problem domain have
been based on proper scientific investigation
rooted in the physical world.

Meanwhile the subject is driven on by indus-
trial innovations from abroad, for example
Microsoft, Sun. Although we will try to fol-
low one (e.g. Java) we will ignore the other
(who teaches Visual Basic as their main lan-
guage?) despite the industrial demand.

If we are experimental scientists we should
be doing some experimental science. We
should be teaching our students how to in-
vestigate the properties and behaviour of ar-
tefacts. This could be done through artefact
classes. In other science and engineering
subjects there are laboratory classes devoted
to taking things apart to see how they are
made and function. Why could we not do the
same? Our emphasis is always on making
things, often trivial and useless devices, rath-
er than looking at how things work. We
should be taking some source code and see-
ing how different parts of it work, how by
changing components or lines of code differ-
ent behaviour results, recording the results
rigorously. Looking at performance issues
on different platforms and under different
loadings. This provides a much clearer un-
derstanding than just reading theoretical
texts.

Part of our problem is that we do not, our-
selves, know how to conduct these experi-
ments. Another problem is our lack of
technical support. In good science depart-
ments each academic has at least one techni-
cian, if we had that level of support we could
try to investigate our subject better, being
funded as mathematics for so long has meant
that our only tools for investigating our sub-
ject are theoretical and unvalidated.

Education, teaching and learning - a discussion paper

Page 4 Printed: 12 July 2008

However, there are things we can do to en-
courage a more experimental and reflective
attitude amongst students from the start.
Consider the typical programming assign-
ment. We set the students a fairly simple
problem and require them to develop some
software to solve it. We may provide them
with an informal statement of the problem,
less commonly a formal requirements docu-
ment or a formal specification. We might
provide some outline program code or a li-
brary of classes or modules to base their so-
lution around.

The things we expect back from them may
include source code, designs, specifications,
test reports and perhaps some informal per-
sonal evaluation. These are what we mark
for correctness, style, consistency etc. Many
students will proceed by programming what
they can as soon as they can and any support-
ing documents, such as designs or specifica-
tions, are often constructed after the event!
We might try to control this tendency by re-
quiring a phased hand-in of things in the cor-
rect order. This is hard to manage since the
intermediate products need to be assessed
and returned before the next product is sub-
mitted, ideally. It is also very difficult to
check that the designs are completely con-
sistent with respect to the code, etc. We
know nothing about how the students have
really created these artefacts.

One possible approach is to require a com-
mentary - perhaps a lab book, which de-
scribes in a systematic way, the steps that
were taken to build these programs. This
would have to record every bug found, how
it was found and what was done to fix it
(whether in the specification or the design or
the code). This would greatly increase the
amount of reporting required and so time
must be allowed for this. The other delivera-
ble would be a report examining these bugs
and reflecting on how they could be avoided.
This might be more important to both stu-
dent and teacher than the designs and the
code. It should receive the majority of the as-

sessment weighting. The personal software
process approach encourages this, [11].

Once this type of mentality has been estab-
lished, each student should be required to
keep their lab book up to date and to use it
every day when they are carrying out devel-
opment activities. In this way we can try to
encourage the sort of personal software
process mentality of recording, reflecting
and improving their basic engineering and
science skills that are so vital.

4. The skills dimension.

The recent DfEE report “Skills in the Infor-
mation Age”, [8], makes rather uncomforta-
ble reading for academics. It is clear that the
scientific and technical knowledge of their
incoming graduates plays a very secondary
role to the principal requirements of employ-
ers. What is wanted are bright students who
have excellent soft skills, who can work well
in teams, who can adapt quickly to new cir-
cumstances, who have a clear understanding
of how business and enterprise works, who
can communicate effectively and so on. The
fact that they may have a deep understanding
of denotational semantics or can prove im-
pressive results about the complexity of ob-
scure parallel algorithms or can create
visually appealing (but probably meaning-
less) design documents in UML is of no con-
sequence if they have never negotiated with
a client or been able to test an application to
make it acceptable to a user community.

We have got it all wrong. We are pedalling
old ideas and theories (Z, etc.) of little real
practical use, we are making our students
perform difficult mathematical tricks for no
reason, we are asking them to build software
applications that nobody wants and we think
that what we are doing is what the subject is
all about.

The subject is changing fast and we are get-
ting left behind. We need to realise that ad-
dressing industry’s needs requires more than
putting on a dreary course on professional is-

Education, teaching and learning - a discussion paper

Page 5 Printed: 12 July 2008

sues and lots of group work. Group work is
almost always a disaster. It is very unpopular
with students who regard it as a threat, it is
often poorly managed and the assessment is
usually a lottery. See [6, 7].

If the object of a group project is to develop
a significant piece of software then we have
to go about it in a sensible way. If the deliv-
erable is a bin job, that is something that no
one really needs and which will end up being
thrown away once it has been marked, then
it is seen as a waste of time and fails to mo-
tivate the students. If there is a real client,
however, someone who really wants the
software and who the students need to nego-
tiate with, then this will achieve much, much
more. The client’s reliance on their work will
also motivate them to produce a much higher
quality product than if they know that it is to
be binned after the marks have been award-
ed. This will give them a much greater un-
derstanding of quality issues, of testing and
of trying to satisfy the client’s needs than any
phoney academic exercise. It provides a
much deeper intellectual challenge for both
students and staff.

The issue of critical review also needs to be
addressed. It is bound up in quality assur-
ance and must feature in real design projects.
However, it is also important in an academic
context. In a hype laden world it is vital that
we encourage our students to take a highly
critical perspective on the published litera-
ture. Give them some recent journal articles
and ask them to present the ideas and find-
ings to the class and to mark the paper in a
structured way. This is a fascinating exercise
rather like the fable of the Emperor’s new
clothes! Many papers that impress us can
leave students cold, our prejudices and as-
sumptions can prevent us from seeing things
in a more dispassionate light.

Returning to the issue of experimental inves-
tigation, we need to directly address the is-
sue of developing our students skills in
model building. They need to know how to
abstract real computational models, investi-

gate their properties and to validate them
against a real system that the model is sup-
posed to represent. If we had done that seri-
ously in the past many of the inadequate
mathematical models and languages used in
formal methods would have been rapidly
consigned to history. How can we consider a
software model that does not deal explicitly
with time if we are claiming to be interested
in safety-critical systems? The emphasis on
modelling dwells too much on notations and
the proving of simple facts and not enough
on validation and evaluation. We are sending
out graduates who are sceptical about what
we have taught them because they know that
it cannot cope with the demands of real sys-
tems and the messy real world.

Another weakness is the way we compart-
mentalise everything into modules etc. We
ought to be looking at the breadth of ideas
and finding ways of selecting the most ap-
propriate for the job in hand. Why is it that
considerations of topics such as intelligent
agents is separated from discussions of algo-
rithms, or formal methods or software engi-
neering and quality assurance?

No wonder students revert to type when they
start their individual projects and seem to
forget much of what we have taught them,
suppressed in the cause of hacking up some
code to produce some “working” end prod-
uct. There is no opportunity for them to take
a principled look at the problem and choose
the appropriate technology, intelligent or
not, to solve it.

5. Does Computer Science have a future?

Computing degrees may continue to have a
future but it is less clear as to whether they
are really necessary. What is their purpose?
Is it to provide employment of academic
computer scientists and to feed into PhD pro-
grammes (thus enabling us to clone our-
selves)? Or should these degrees try to
provide a more industrial focus? Increasing-
ly, application domains in the scineces, engi-
neering and the humanities are generating

Education, teaching and learning - a discussion paper

Page 6 Printed: 12 July 2008

their own software experts, people who un-
derstand the domain and can build reliable
code as well as our own students can We,
meanwhile, focus on obscure abstractions
and notations, unwieldy design methodolo-
gies and research into irrelevant branches of
the field while industry is marching on with-
out us. Perhaps, in the not too distant future,
there will be no Computer Science depart-
ments, just a few people in mathematics de-
partments studying abstract notations and
lots of people learning computing and prac-
tical software development in engineering,
chemistry, biology, medicine and arts de-
partments.

The successful computer science depart-
ments that do survive will try to address
these issues with an increasing emphasis on
specific application domains and on more
practical project exercise involving real cli-
ents. They will get involved with building
intelligent applications to support the analy-
sis of digital objects - text, images, sound,
etc. of interest to science, arts, engineering,
business and others in collaboration with the
domain experts and not in some isolated ivo-
ry tower that is today’s typical computer sci-
ence department! The basic theory (Turing
etc.) will still be part of our foundations but
the current generation of formal methods
and software engineering techniques will
need to re-invent themselves into something
that actually addresses the challenges of
complex system design and construction and
can be defended in a scientific way. What is
really needed is a software engineering sci-
ence. The stirrings are there but it won’t hap-
pen overnight, [9].

Some suggestions for developing our curric-
ulum:

• some real experimental science;
• more focus on artefact studies;
• better integration of ideas;
• real projects with real clients;
• critical reviews and assessment of work;

And then there is assessment, but that is an-
other story!

References.

[1] A B Tucker et al. “Strategic directions in Compu-
ter Science Education”, ACM Computing Surveys, 28,
1996.
[2] A J H Simons and I Graham, "30 Things that go
wrong in object modelling with UML 1.3" , chapter
16 in: Behavioral Specifications of Businesses and
Systems eds. H Kilov, B Rumpe, I Simmonds (Kluwer
Academic Publishers, 1999), 221-242.
[3] A J H Simons, "Use cases considered harmful",
Proc. 29th Conf. Tech. Obj.-Oriented Prog. Lang.
and Sys., (TOOLS-29 Europe), eds. R Mitchell, A C
Wills, J Bosch and B Meyer (Los Alamitos, CA :
IEEE Computer Society, 1999), 194-203.
[4] A J H Simons and I Graham, "37 Things that
don’t work in object modelling with UML", British
Computer Society Obj.-Oriented Prog. Sys. Newslet-
ter, 35, eds. S Kent and R Mitchell (BCS: Autumn,
1998)
[5] A J H Simons, M Holcombe & K Bogdanov, “Di-
vide and conquer testing using hierarchical object
statecharts”, Submitted.
[6] H Parker, M Holcombe and A Bell, “Keeping our
customers happy: Myths and management issues in
"client-led" student software projects”, Computer
Science Education, 9, 230-241, 1999.
[7] M Holcombe, A Stratton, S Fincher, G Griffiths
(Eds), Projects in the computing curriculum, Spring-
er, 1998.
[8] See http://www.dfee.gov.uk/skillsforce/7.htm
[9] M Holcombe & F Ipate, Correct systems: building
business process solutions, Springer Applied Com-
puting Series, 1998.
[10] K. Beck, Extreme programming explained: em-
brace change, Addison Wesley, 1999.
[11] W.S. Humphrey, Introduction to the Personal
Software Process, Addison Wesley, 1997.

Some of the work referred to in this article was sup-
ported by the UK Government’s Fund for the Devel-
opment of Teaching and Learning initiative. The
Industrial Software Project Support Network is
based at the University of Sheffield and further infor-
mation can be found at:
 http://www.dcs.shef.ac.uk/teaching/fdtl/

