
1

Extreme programming (XP) -
dead end or a fresh start for

software
engineering?

Mike Holcombe,
University of Sheffield

Department of Computer Science, University of Sheffield
Department of Computer Science, University of Sheffield

Plan
•Why are lightweight methodologies such as
eXtreme Programming emerging?

•What is eXtreme Programming, (XP)?

•Does it work?

•How can it be improved?

Department of Computer Science, University of Sheffield

Lightweight methodologies are approaches
which reduce the impact of expensive parts
of the software engineering life cycle.

Typically this means reducing the
complexity of the process and making it less
bureaucratic.

Also, trying to make it more human
friendly.

Department of Computer Science, University of Sheffield

Lightweight methodologies focus on
building quality software -

rather than on creating vast amounts of
documentation that is often:

incomplete,

inconsistent

and unintelligible!

Department of Computer Science, University of Sheffield

XP tries to address issues where current
software engineering fails i.e.:

the dynamic nature of modern business

by the time the design is done it is out of
date;

as business needs change the software has
to evolve – this is hard to do.

Department of Computer Science, University of Sheffield

The four basic principles of XP
Communication

Feedback

Simplicity

Courage

2

Department of Computer Science, University of Sheffield

The twelve sacred tenets of XP (Beck)
1. Test first programming.

Before writing any code programmers build a
set of tests.

These tests are run – of course they will fail as no
code has been written!

Why would one do this?

Department of Computer Science, University of Sheffield

To get used to testing continuously –

At the end of a session, at the end of the
day, whenever a small piece of code has
been built -

ALL the test sets are run, this means -

all the relevant unit tests,

all the functional tests.

Department of Computer Science, University of Sheffield

The test sets are the most important
resource and are continually enhanced.

The customer helps to supply tests.

Functional tests are derived from the
planning game (see below).

The test sets replace the specification.

If any tests fail the code must be fixed.

Department of Computer Science, University of Sheffield

2. The planning game

The customer provides business stories and
estimates are made about the time to build
software to implement the stories.

The customer decides which stories provide
the most business value.

Programmers implement the chosen stories.

Department of Computer Science, University of Sheffield

3. Small, frequent releases
Release early and release often.

4. Always use the SIMPLEST design that
adds business value.

5. System metaphor.

Programmers define a handful of classes
and patterns that shape the core business
problem and solution.

Department of Computer Science, University of SheffieldDepartment of Computer Science, University of Sheffield

6. On-site customer.

Encourages intense face-to-face dialogue.

7. Refactoring.

Restructuring code without changing its
functionality.

Used mainly to SIMPLIFY code – make it
more understandable, more
maintainable.

3

Department of Computer Science, University of Sheffield

8. Pair programming.

Two people - One machine.

All code must be written in this way.

This is continuous review and gives a much
greater understanding of what is being
done.

Pairs swap around frequently.

Different pairs form up regularly.

Department of Computer Science, University of Sheffield

9. Collective code ownership.

ALL the code belongs to ALL the
programmers.

Anyone can change anything.

There are house rules for writing and
documenting code and for communicating
between teams.

Department of Computer Science, University of Sheffield

10. Coding standards.

Defines rules for shared code ownership
and for communication between different
team’s code.

Consistent class and method naming.

Everyone should use the same coding
styles.

Department of Computer Science, University of Sheffield

11. Continuous integration.

Code is integrated into the system at
least a few times every day.

All unit tests must pass prior to
integration.

All relevant functional tests must pass
afterwards.

Department of Computer Science, University of Sheffield

12. Forty hour week.

Tired programmers write poor code and
make more mistakes.

Department of Computer Science, University of Sheffield

It is quite hard to stick with ALL these
rules - XP requires discipline.

Some teams need a “coach” to ensure that
they do stick to XP!

There have been successes as well as
failures with XP –

More research is needed.

4

Department of Computer Science, University of Sheffield

It is demanding

• For the programmers – they need to
develop all round skills

• For the clients – they need to give up
more time

• For managers – they need to trust their
teams more

• But it raises the profile of testing!

Does it work?

• Some comparative empirical evidence
that it does.

• Different teams using XP and traditional
methods building the same systems for
the same client.

• XP delivered better quality, quicker with
less stress.

Department of Computer Science, University of Sheffield

XP and industry

• There has been a rapid growth of software
houses, especially in the USA adopting XP

• Several UK companies are using it
successfully.

• Seems to be popular in financial services
and telcomms – both highly dynamic
business areas

Department of Computer Science, University of Sheffield

What are the problems with XP?

The biggest problem is with the functional
test sets.

No guidance is given – it all seems ad hoc.

The system metaphor development also
needs a more structured approach.

And can it work for big projects?

Department of Computer Science, University of Sheffield

Department of Computer Science, University of Sheffield

Proper support is needed

• Support for managing XP projects
• Support for XP testing
• Support for training and reinforcing the

XP principles
• Support for code conventions

The Observatory

• This is a mechanism for empirical research
into software methodologies, not just XP.

• Comparative experiments on the complete
software development process

• Observations on the ways in which new
methods can be adopted into working
companies

Department of Computer Science, University of Sheffield

5

Software Hut

• 90 2nd year students in teams of 4-5
• 20 teams, 4 external clients.
• Half the teams use XP the rest use “trad”
• Clients evaluate the end product.
• We evaluate the process.
• We collect lots of data: time sheets, plans,

test sets, code, designs etc.

Department of Computer Science, University of Sheffield

This year’s clients
• Small Firms Federation
• National Cancer Screening Service
• LearnDirect (UfI)
• Dental research organisation

• Mainly e-commerce/intranet/database
applications.

• Using MySQL, PHP, JSP, etc.

Department of Computer Science, University of Sheffield

XP in Genesys Solutions

• Introduced XP in 2000.
• A working software house. 25-30 part time staff
• Both new projects and maintenance projects
• XP adopted in 2000
• XP popular with most programmers but not all
• It’s easy to degenerate into bad habits.
• Regular reinforcement of the philosophy is

needed.

Department of Computer Science, University of Sheffield

An XP intranet

• We have found that the development of
this sort of support has helped Genesys to
adopt XP better.

• Test environments, planning support,
resource estimation, code convention
templates, test convention templates etc.
are all available.

• Their use can be monitored.

Department of Computer Science, University of Sheffield

More XP tasks

• Collecting data about the process and
using it for process improvement

• Supplying data for resource estimations
in the planning game.

• Checking compliance.

Department of Computer Science, University of Sheffield

Where XP needs more work

• Functional testing.
• We are using a simple but effective

method for deriving these test sets.
• It is based on the X-machine total testing

method.

Department of Computer Science, University of Sheffield

6

What is total testing?
• Total testing is a technique that finds all functional

faults subject to certain conditions
• It is based on computational modelling and has been

mathematically proven
• It is also very practical and has been used successfully

in a number of industrial applications
• It requires a functional specification from which the

test sets are generated
• The specification language used is based on an easy

generalisation of finite state machines

Department of Computer Science, University of Sheffield

Beyond state machines
• FSM methods are impractical for most software

systems
• FSMs are not powerful enough to represent more than

the control structure of a system without state
explosion problems

• They are weak at describing the relationship between
control and data which is vital for testing

• We introduce a simple concept of internal memory.
• This is any set of elements that can be used by the

machine to model its behaviour
• The memory could be the contents of a database or

some other internal variables which are needed during
the operation of the system

Department of Computer Science, University of Sheffield

Generalised machines

• States are connected by some simple functions

function1

function2

function3

function2

state1

state2

state3

state4

Department of Computer Science, University of Sheffield

X-machines 1

• We now have a system with:
– states,
– inputs,
– outputs
– and memory

Department of Computer Science, University of Sheffield

X-machines 2

• At the bottom level of the system is a set of basic
functions

• These functions operate on the basis of being supplied a
pair of values, the current input and the current state of
memory,

• They create an output and update the internal memory
when they operate.

• There are no restrictions on the structure or contents of
either the memory or these basic functions and this
flexibility can be used to abstract and simplify models

Department of Computer Science, University of Sheffield

A simple example
• The system is then modelled by identifying its states

and the basic functions that are the transitions between
states.

orders orders(confirm)

start
customersClick(customer)

Quit

Orders(data)

Customers(data)

Click(order)

Department of Computer Science, University of Sheffield

7

X-machines 3

• These simple functions operate as follows:
• Click(order) takes as input a button click from the

orders button on the user interface. It ignores the
internal memory.

• The result is a state change – here that is a new screen
with suitable provision for data entry relating to
orders, the output is a new screen, nothing is done to
the memory.

• Function: { input, memory; new memory, output }

Department of Computer Science, University of Sheffield

A simple example (again)

orders orders(confirm)

start
customersClick(customer)

Quit

Orders(data)

Customers(data)

Click(order)

Department of Computer Science, University of Sheffield

How the model works

• Orders(data) then takes the data entry for all the
parameters allowed on the screen and consults the
memory to see if there are any conflicts,

• The result is a new screen offering the confirm choice
for the data – or the resolution of a conflict if there is
one in the data already present

• At this stage the new data is not added to the memory -
this happens if the confirm is agreed, carried out by a
subsequent function.

Department of Computer Science, University of Sheffield

Basic testing philosophy

• We have two things that we wish to compare:
• The specification and the implementation – do they

ALWAYS behave the same?

specification implementation
Test

Department of Computer Science, University of Sheffield

Total test fundamentals

• We can only access the implemented system through
the system interface

• Thus we can apply inputs and observe the results
(outputs)

• On the basis of this we have to determine whether the
behaviour is correct

• The test sets generated by the method depend on some
assumptions

• If the implementation passes ALL the tests in the test
set

THEN IT IS CORRECT – THAT IS IT BEHAVES EXACTLY
AND ALWAYS LIKE THE SPECIFICATION

Department of Computer Science, University of Sheffield

Design for test

• Assumptions about the specification:

– It is described as an X-machine
– The machine is deterministic
– The basic functions are correct (previously

tested/tried and trusted)
– The specification satisfies the following technical

requirements:

Department of Computer Science, University of Sheffield

8

Design for test 2
• Controllability – that is, the system can be driven

into any state and any function from that state can
be exercised

– Can always be achieved by introducing special
test inputs where needed

• Observability – that is, we can determine, purely
from external observation which function has been
exercised.

– Can always be achieved by introducing special
test outputs where needed

Department of Computer Science, University of Sheffield

Total test algorithm

• We consider the state space of the specification

a b c

d e f

X

Y
Z

W

X

W

Z

Functions: X, Y, Z, W. Initial state:a.

Department of Computer Science, University of Sheffield

Algorithm

• The test set produced is based on the W method
• We create sequences of functions that visit every state and exercise

every possible function from that state – both functions that should
be there and those that should not

• We need to identify which state we end up in each time
• This is done by constructing special test sequences that do this
• The complete test set is then a set consisting of sequences of

functions
• Examples:

– X :: W :: Z
– Y :: Z :: X
– And so on.

Department of Computer Science, University of Sheffield

Test set transformation

• We need to transform these sequences into sequences of inputs
rather than functions

• If the controllability and observability conditions are satisfied then
this can be done

• We need to identify the initial state of the internal memory as well
• An algorithm exists to do this
• The test set also requires one further piece of information – an

estimate of how many extra states there might be in the
implementation - often obtained from code inspection but it could
be estimated

• The size of the test set depends on this estimate, more states means
more tests

Department of Computer Science, University of Sheffield

Practical issues

• We need a suitable X-machine specification for this to work
• Many design notations can be converted to this notation
• We need to check that the design for test conditions are satisfied
• We could check that the specification matches the requirements –

possibly through model checking
• The test generation process has been automated
• Once testing is finished then we know that the system is correct

subject to our assumptions:
– The basic functions are implemented correctly
– The estimate of state size is reasonable
– The design for test conditions hold

Department of Computer Science, University of Sheffield

From story cards to test sets

Department of Computer Science, University of Sheffield

Customer story card Project title _______________________________

Date ______________ Project phase/iteration _______________

Requirements number ______________ Story name ____________________

Task description (English)

Initiating event

Memory context

Observable result

Risk factor Change factor

Notes

Related stories

9

Requirements table

Department of Computer Science, University of Sheffield

From the stories we develop individual requirements in a
table format.

1 (low)updated
d’base

messageCurrent
d’base

Save
click

save

change
risk

new
memory

outputmemoryinputstory

Constructing the X-machine

• From the stories we develop more detailed
functional requirement statements

• We assemble the X-machine by studying the
flow of activity between these functions

• Complete the design for test conditions
• Generate the test sets automatically.
• Refine machine as requirements change

Department of Computer Science, University of Sheffield

Generate the test sets

• Once the design for test and other issues
are dealt with.

• Test sets generated automatically.
• Tests not what the system should do –
• Also tests that the system does not do

what it shouldn’t do.

Department of Computer Science, University of Sheffield

Conclusions

• XP can work well for small to medium
projects but testing needs to be done well.

• Support is needed – software,
management.

• It seems popular with programmers.
• Not so popular with traditional managers
• More empirical research is needed.

Department of Computer Science, University of Sheffield

References:

Kent Beck “Extreme programming explained.”
Addison-Wesley, 1999.

K. Beck & M. Fowler, “Planning extreme
programming.” Addison-Wesley, 2000.

Ron Jeffries, <http://www.Xprogramming.com>

<http://www.dcs.shef.ac.uk/~wmlh/COM2070XP.
html>

Department of Computer Science, University of Sheffield

